Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Atmosphere ; 13(12):2002, 2022.
Article in English | MDPI | ID: covidwho-2142450

ABSTRACT

This research was carried out to analyze variations in indoor and outdoor ozone concentrations and their health impact on local communities of megacities in Pakistan. For indoor ozone measurements, industrial units of an economic zone, Hattar Industrial Estate, Haripur, KPK, Pakistan, were selected. For outdoor ozone measurements, maximum and minimum peaks from different selected stations of three megacities (Islamabad, Abbottabad, and Haripur Hattar) in Pakistan were analyzed for paired comparisons. The tropospheric ozone levels were measured with the help of a portable SKY 2000-WH-O3 meter from December 2018 to November 2019. According to the findings of this investigation, the indoor ozone concentrations at Hattar Industrial Estate exceeded the permissible limit devised by the WHO. The highest concentration (0.37 ppm) was recorded in the month of May in the food industry, while the lowest concentration (0.00 ppm) was recorded in the cooling area of the steel industry in the month of December. For outdoor ozone concentrations, the maximum concentration (0.23 ppm) was detected in Islamabad in the month of March 2019, whereas the rest of year showed comparatively lower concentrations. In Haripur, the maximum concentration (0.22 ppm) was detected in the month of February 2019 and a minimum concentration (0.11 ppm) was found in the month of November 2019. In Abbottabad, the maximum concentration (0.21 ppm) was detected in the month of March 2019 and the minimum concentration was 0.082 ppm. Increasing tropospheric ozone levels might be harmful for local communities and industrial laborers in the winter season because of the foggy weather. In the Abbottabad and Hattar regions, since COVID infection is indirectly related to low temperature and high emission of gases may compromise the respiratory systems of humans. The results of the present study were shared with industrialists to set precautions for ambient air quality and support the adoption of low emission techniques in industries for the safety of labour and nearby residents.

2.
Environ Sci Pollut Res Int ; 29(4): 6267-6277, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1375673

ABSTRACT

COVID-19 is one of the major pandemics in history. It has caused various health problems to majority of countries in the world. Several researchers have examined and developed studies regarding concerns on air pollution being considered a major risk factor causing respiratory infections. Such infections are carried out by microorganisms, thus further affecting the immune system. The present study involves the relationship between air pollutants and the total COVID-19 infections along with the estimation of death rates in several regions of Saudi Arabia. The major goal of this study comprises the analysis of the relationship between air pollutants concentration, such as PM10, NO2, CO, SO2, and O3, and the widespread outbreak of COVID-19. This scenario involves the transmission, number of patients, critical cases, and death rates. Results show that the estimation of recorded COVID-19 cases was in the most polluted regions; the mortality rate and critical cases were also more distinct in these regions than in other regions in Saudi Arabia. The finding of this study demonstrates a positive correlation between the mean values of PM10, NO2, CO, and SO2 pollutants. The results represent the significant relationship between air pollution resulting from a high concentration of NO2 and COVID-19 infections and deaths. In addition, a null hypothesis of the relation between other pollutants and COVID-19 infections cannot be rejected. The study also indicates a significant correlation between the means of NO2 and CO and the total number of critical cases. Negative correlations are obtained between the mean of O3 and the total number of cases, total deaths, and critical case per cumulative days.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2 , Saudi Arabia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL